3.58 \(\int \frac {\tan ^5(c+d x)}{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=66 \[ \frac {\sec ^3(c+d x)}{3 a d}-\frac {\sec ^2(c+d x)}{2 a d}-\frac {\sec (c+d x)}{a d}-\frac {\log (\cos (c+d x))}{a d} \]

[Out]

-ln(cos(d*x+c))/a/d-sec(d*x+c)/a/d-1/2*sec(d*x+c)^2/a/d+1/3*sec(d*x+c)^3/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {3879, 75} \[ \frac {\sec ^3(c+d x)}{3 a d}-\frac {\sec ^2(c+d x)}{2 a d}-\frac {\sec (c+d x)}{a d}-\frac {\log (\cos (c+d x))}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^5/(a + a*Sec[c + d*x]),x]

[Out]

-(Log[Cos[c + d*x]]/(a*d)) - Sec[c + d*x]/(a*d) - Sec[c + d*x]^2/(2*a*d) + Sec[c + d*x]^3/(3*a*d)

Rule 75

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && EqQ[b*e + a*f, 0] &&  !(ILtQ[n
 + p + 2, 0] && GtQ[n + 2*p, 0])

Rule 3879

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[1/(a^(m - n
- 1)*b^n*d), Subst[Int[((a - b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x^(m + n), x], x, Sin[c + d*x]], x] /
; FreeQ[{a, b, c, d}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] && IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {\tan ^5(c+d x)}{a+a \sec (c+d x)} \, dx &=-\frac {\operatorname {Subst}\left (\int \frac {(a-a x)^2 (a+a x)}{x^4} \, dx,x,\cos (c+d x)\right )}{a^4 d}\\ &=-\frac {\operatorname {Subst}\left (\int \left (\frac {a^3}{x^4}-\frac {a^3}{x^3}-\frac {a^3}{x^2}+\frac {a^3}{x}\right ) \, dx,x,\cos (c+d x)\right )}{a^4 d}\\ &=-\frac {\log (\cos (c+d x))}{a d}-\frac {\sec (c+d x)}{a d}-\frac {\sec ^2(c+d x)}{2 a d}+\frac {\sec ^3(c+d x)}{3 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 65, normalized size = 0.98 \[ -\frac {\sec ^3(c+d x) (6 \cos (2 (c+d x))+3 \cos (3 (c+d x)) \log (\cos (c+d x))+\cos (c+d x) (9 \log (\cos (c+d x))+6)+2)}{12 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^5/(a + a*Sec[c + d*x]),x]

[Out]

-1/12*((2 + 6*Cos[2*(c + d*x)] + 3*Cos[3*(c + d*x)]*Log[Cos[c + d*x]] + Cos[c + d*x]*(6 + 9*Log[Cos[c + d*x]])
)*Sec[c + d*x]^3)/(a*d)

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 55, normalized size = 0.83 \[ -\frac {6 \, \cos \left (d x + c\right )^{3} \log \left (-\cos \left (d x + c\right )\right ) + 6 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) - 2}{6 \, a d \cos \left (d x + c\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^5/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

-1/6*(6*cos(d*x + c)^3*log(-cos(d*x + c)) + 6*cos(d*x + c)^2 + 3*cos(d*x + c) - 2)/(a*d*cos(d*x + c)^3)

________________________________________________________________________________________

giac [B]  time = 4.20, size = 157, normalized size = 2.38 \[ \frac {\frac {6 \, \log \left ({\left | -\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} + 1 \right |}\right )}{a} - \frac {6 \, \log \left ({\left | -\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} - 1 \right |}\right )}{a} + \frac {\frac {21 \, {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {45 \, {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {11 \, {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + 3}{a {\left (\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} + 1\right )}^{3}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^5/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

1/6*(6*log(abs(-(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 1))/a - 6*log(abs(-(cos(d*x + c) - 1)/(cos(d*x + c) +
1) - 1))/a + (21*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 45*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 + 11*(co
s(d*x + c) - 1)^3/(cos(d*x + c) + 1)^3 + 3)/(a*((cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 1)^3))/d

________________________________________________________________________________________

maple [A]  time = 0.54, size = 62, normalized size = 0.94 \[ \frac {\sec ^{3}\left (d x +c \right )}{3 d a}-\frac {\sec ^{2}\left (d x +c \right )}{2 d a}-\frac {\sec \left (d x +c \right )}{d a}+\frac {\ln \left (\sec \left (d x +c \right )\right )}{a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^5/(a+a*sec(d*x+c)),x)

[Out]

1/3*sec(d*x+c)^3/d/a-1/2*sec(d*x+c)^2/d/a-sec(d*x+c)/d/a+1/a/d*ln(sec(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.32, size = 50, normalized size = 0.76 \[ -\frac {\frac {6 \, \log \left (\cos \left (d x + c\right )\right )}{a} + \frac {6 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) - 2}{a \cos \left (d x + c\right )^{3}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^5/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

-1/6*(6*log(cos(d*x + c))/a + (6*cos(d*x + c)^2 + 3*cos(d*x + c) - 2)/(a*cos(d*x + c)^3))/d

________________________________________________________________________________________

mupad [B]  time = 2.19, size = 99, normalized size = 1.50 \[ \frac {2\,\mathrm {atanh}\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}{a\,d}+\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-\frac {4}{3}}{d\,\left (-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+3\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-3\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^5/(a + a/cos(c + d*x)),x)

[Out]

(2*atanh(tan(c/2 + (d*x)/2)^2))/(a*d) + (2*tan(c/2 + (d*x)/2)^2 + 2*tan(c/2 + (d*x)/2)^4 - 4/3)/(d*(a - 3*a*ta
n(c/2 + (d*x)/2)^2 + 3*a*tan(c/2 + (d*x)/2)^4 - a*tan(c/2 + (d*x)/2)^6))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\tan ^{5}{\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**5/(a+a*sec(d*x+c)),x)

[Out]

Integral(tan(c + d*x)**5/(sec(c + d*x) + 1), x)/a

________________________________________________________________________________________